標題:
數學知識交流---求值(2)
發問:
(1) 已知 √ [(x+y)^2 + (x-y)^2] = 5 √ [(x+2y)^2 + (2x+y)^2] = 10 求 x^2 + y^2
最佳解答:
(1) 解: √ [(x+y)2 + (x-y)2] = 5 ----------(1) √ [(x+2y)2 + (2x+y)2] = 10 ----(2) 由(1),得: (x+y)2 + (x-y)2 = 25 x2 + 2xy + y2 + x2 - 2xy + y2 = 25 2x2 + 2y2 = 25 x2 + y2 = 12.5---------------------(3) 由(2),得: (x+2y)2 + (2x+y)2 = 100 x2 + 4xy + 4y2 + 4x2 + 4xy + y2 = 100 5x2 + 8xy + 5y2 = 100 ----------(4) 把(3)代入(4),得: 5 (12.5) + 8xy = 100 xy = 75/16 ------------------------(5) (3) + (5)×2,得: (x+y)2 = 175/8 x+y = ± (5√14)/4 ---------------(6) (3) - (5)×2,得: (x-y)2 = 25/8 x-y = ± (5√2)/4 -----------------(7) [((6) + (7))/2]2 + [((6)-(7))/2]2,得: x2 + y2 = 12.5 2011-06-08 13:22:28 補充: 題目給出兩條式,我們就不能只是計算第一條式。即是只計算第一條式就能算出答案,但是還要確保答案符合第二條式,假如不符合第二條式,那題目就無解了。
此文章來自奇摩知識+如有不便請留言告知
其他解答:
同意001意見的說法,最簡單的例子: a + b = 7 a + b = 8 求2a + 2b的值。 怎能只用第一條式來求呢?假如原方程組是無解,那怎樣求值呢?Crazy!|||||√ [(x+y)^2 + (x-y)^2] = 5√ [(x+y)(x+y)+(x-y)(x-y)]=5√ [(x^2+xy+xy+y^2)(x^2-xy-xy+y2)]=5√ (x^2+2xy+y^2+x^2-2xy+y2)=5√ (2x^2+2y^2)=52x^2+2y^2=25_______(1)√ [(x+2y)^2 + (2x+y)^2] = 10(x+2y)(x+2y)+(2x+y)(2x+y)=100x^2+2xy+2xy+4y^2+4x^2+2xy+2xy+y^2=1005x^2+8xy+5y^2=100__(2)SO, 5x^2+5y^2=100 -2x^2+2y^2=25 3x^2+3y^2=75 x^2+y^2=25|||||(x+y)2+(x-y)2=25 x2+2xy+y2+x2-2xy+y2=25 2x2+2y2=25 x2+y2=12.5
留言列表